Skip to content

optimize_template_manager

Pydantic model for running the optimize template program.

OptimizeTemplateManager

Bases: BaseModel2DTM

Model holding parameters necessary for running the optimize template program.

Attributes:

Name Type Description
particle_stack ParticleStack

Particle stack object containing particle data.

pixel_size_coarse_search PixelSizeSearchConfig

Configuration for pixel size coarse search.

pixel_size_fine_search PixelSizeSearchConfig

Configuration for pixel size fine search.

preprocessing_filters PreprocessingFilters

Filters to apply to the particle images.

computational_config ComputationalConfig

What computational resources to allocate for the program.

simulator Simulator

The simulator object.

Methods:

Name Description
TODO serialization/import methods
__init__

Initialize the optimize template manager.

make_backend_core_function_kwargs

Create the kwargs for the backend optimize_template core function.

run_optimize_template

Run the optimize template program.

Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
class OptimizeTemplateManager(BaseModel2DTM):
    """Model holding parameters necessary for running the optimize template program.

    Attributes
    ----------
    particle_stack : ParticleStack
        Particle stack object containing particle data.
    pixel_size_coarse_search : PixelSizeSearchConfig
        Configuration for pixel size coarse search.
    pixel_size_fine_search : PixelSizeSearchConfig
        Configuration for pixel size fine search.
    preprocessing_filters : PreprocessingFilters
        Filters to apply to the particle images.
    computational_config : ComputationalConfig
        What computational resources to allocate for the program.
    simulator : Simulator
        The simulator object.

    Methods
    -------
    TODO serialization/import methods
    __init__(self, skip_mrc_preloads: bool = False, **data: Any)
        Initialize the optimize template manager.
    make_backend_core_function_kwargs(self) -> dict[str, Any]
        Create the kwargs for the backend optimize_template core function.
    run_optimize_template(self, output_text_path: str) -> None
        Run the optimize template program.
    """

    model_config: ClassVar = ConfigDict(arbitrary_types_allowed=True)

    particle_stack: ParticleStack
    pixel_size_coarse_search: PixelSizeSearchConfig
    pixel_size_fine_search: PixelSizeSearchConfig
    preprocessing_filters: PreprocessingFilters
    computational_config: ComputationalConfig
    simulator: Simulator

    # Excluded tensors
    template_volume: ExcludedTensor

    def make_backend_core_function_kwargs(
        self, prefer_refined_angles: bool = True
    ) -> dict[str, Any]:
        """Create the kwargs for the backend refine_template core function.

        Parameters
        ----------
        prefer_refined_angles : bool
            Whether to use refined angles or not. Defaults to True.
        """
        # simulate template volume
        template = self.simulator.run(gpu_ids=self.computational_config.gpu_ids)

        # The set of "best" euler angles from match template search
        # Check if refined angles exist, otherwise use the original angles
        euler_angles = self.particle_stack.get_euler_angles(prefer_refined_angles)

        # The relative Euler angle offsets to search over (none for optimization)
        euler_angle_offsets = torch.zeros((1, 3))

        # The relative defocus values to search over (none for optimization)
        defocus_offsets = torch.tensor([0.0])

        # The relative pixel size values to search over (none for optimization)
        pixel_size_offsets = torch.tensor([0.0])

        # Use the common utility function to set up the backend kwargs
        # pylint: disable=duplicate-code
        return setup_particle_backend_kwargs(
            particle_stack=self.particle_stack,
            template=template,
            preprocessing_filters=self.preprocessing_filters,
            euler_angles=euler_angles,
            euler_angle_offsets=euler_angle_offsets,
            defocus_offsets=defocus_offsets,
            pixel_size_offsets=pixel_size_offsets,
            device_list=self.computational_config.gpu_devices,
        )

    def run_optimize_template(self, output_text_path: str) -> None:
        """Run the refine template program and saves the resultant DataFrame to csv.

        Parameters
        ----------
        output_text_path : str
            Path to save the optimized template pixel size.
        """
        if self.pixel_size_coarse_search.enabled:
            # Create a file for logging all iterations
            all_results_path = self._get_all_results_path(output_text_path)
            # Create the file and write header
            with open(all_results_path, "w", encoding="utf-8") as f:
                f.write("Pixel Size (Å),SNR\n")

            optimal_template_px = self.optimize_pixel_size(all_results_path)
            print(f"Optimal template px: {optimal_template_px:.3f} Å")
            # print this to the text file
            with open(output_text_path, "w", encoding="utf-8") as f:
                f.write(f"Optimal template px: {optimal_template_px:.3f} Å")

    def optimize_pixel_size(self, all_results_path: str) -> float:
        """Optimize the pixel size of the template volume.

        Parameters
        ----------
        all_results_path : str
            Path to the file for logging all iterations

        Returns
        -------
        float
            The optimal pixel size.
        """
        initial_template_px = self.simulator.pixel_spacing
        print(f"Initial template px: {initial_template_px:.3f} Å")

        best_snr = float("-inf")
        best_px = float(initial_template_px)

        print("Starting coarse search...")

        pixel_size_offsets_coarse = self.pixel_size_coarse_search.pixel_size_values
        coarse_px_values = pixel_size_offsets_coarse + initial_template_px

        consecutive_decreases = 0
        consecutive_threshold = 2
        previous_snr = float("-inf")
        for px in coarse_px_values:
            snr = self.evaluate_template_px(px=px.item())
            print(f"Pixel size: {px:.3f}, SNR: {snr:.3f}")

            # Log to file
            with open(all_results_path, "a", encoding="utf-8") as f:
                f.write(f"{px:.3f},{snr:.3f}\n")

            if snr > best_snr:
                best_snr = snr
                best_px = px.item()
            if snr > previous_snr:
                consecutive_decreases = 0
            else:
                consecutive_decreases += 1
                if consecutive_decreases >= consecutive_threshold:
                    print(
                        f"SNR decreased for {consecutive_threshold} iterations. "
                        f"Stopping coarse px search."
                    )
                    break
            previous_snr = snr

        if self.pixel_size_fine_search.enabled:
            pixel_size_offsets_fine = self.pixel_size_fine_search.pixel_size_values
            fine_px_values = pixel_size_offsets_fine + best_px

            consecutive_decreases = 0
            previous_snr = float("-inf")
            for px in fine_px_values:
                snr = self.evaluate_template_px(px=px.item())
                print(f"Pixel size: {px:.3f}, SNR: {snr:.3f}")

                # Log to file
                with open(all_results_path, "a", encoding="utf-8") as f:
                    f.write(f"{px:.3f},{snr:.3f}\n")

                if snr > best_snr:
                    best_snr = snr
                    best_px = px.item()
                if snr > previous_snr:
                    consecutive_decreases = 0
                else:
                    consecutive_decreases += 1
                    if consecutive_decreases >= consecutive_threshold:
                        print(
                            f"SNR decreased for {consecutive_threshold} iterations. "
                            "Stopping fine px search."
                        )
                        break
                previous_snr = snr

        return best_px

    def evaluate_template_px(self, px: float) -> float:
        """Evaluate the template pixel size.

        Parameters
        ----------
        px : float
            The pixel size to evaluate.

        Returns
        -------
        float
            The mean SNR of the template.
        """
        self.simulator.pixel_spacing = px
        backend_kwargs = self.make_backend_core_function_kwargs()
        result = self.get_correlation_result(backend_kwargs, 1)
        mean_snr = self.results_to_snr(result)
        return mean_snr

    def get_correlation_result(
        self, backend_kwargs: dict, orientation_batch_size: int = 64
    ) -> dict[str, np.ndarray]:
        """Get correlation result.

        Parameters
        ----------
        backend_kwargs : dict
            Keyword arguments for the backend processing
        orientation_batch_size : int
            Number of orientations to process at once. Defaults to 64.

        Returns
        -------
        dict[str, np.ndarray]
            The result of the refine template program.
        """
        # pylint: disable=duplicate-code
        result: dict[str, np.ndarray] = {}
        result = core_refine_template(
            batch_size=orientation_batch_size, **backend_kwargs
        )
        result = {k: v.cpu().numpy() for k, v in result.items()}

        return result

    def results_to_snr(self, result: dict[str, np.ndarray]) -> float:
        """Convert optimize template result to mean SNR.

        Parameters
        ----------
        result : dict[str, np.ndarray]
            The result of the optimize template program.

        Returns
        -------
        float
            The mean SNR of the template.
        """
        # Filter out any infinite or NaN values
        # NOTE: There should not be NaNs or infs, will follow up later
        refined_scaled_mip = result["refined_z_score"]
        refined_scaled_mip = refined_scaled_mip[np.isfinite(refined_scaled_mip)]

        # If more than n values, keep only the top n highest SNRs
        best_n = 6
        if len(refined_scaled_mip) > best_n:
            refined_scaled_mip = np.sort(refined_scaled_mip)[-best_n:]

        # Printing out the results to console
        print(
            f"max snr: {refined_scaled_mip.max()}, min snr: {refined_scaled_mip.min()}"
        )

        mean_snr = float(refined_scaled_mip.mean())

        return mean_snr

    def _get_all_results_path(self, output_text_path: str) -> str:
        """Generate the results file path from the output text path.

        Parameters
        ----------
        output_text_path : str
            Path to the output text file

        Returns
        -------
        str
            Path to the file with _all.txt extension
        """
        base, _ = os.path.splitext(output_text_path)
        return f"{base}_all.csv"

evaluate_template_px(px)

Evaluate the template pixel size.

Parameters:

Name Type Description Default
px float

The pixel size to evaluate.

required

Returns:

Type Description
float

The mean SNR of the template.

Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
def evaluate_template_px(self, px: float) -> float:
    """Evaluate the template pixel size.

    Parameters
    ----------
    px : float
        The pixel size to evaluate.

    Returns
    -------
    float
        The mean SNR of the template.
    """
    self.simulator.pixel_spacing = px
    backend_kwargs = self.make_backend_core_function_kwargs()
    result = self.get_correlation_result(backend_kwargs, 1)
    mean_snr = self.results_to_snr(result)
    return mean_snr

get_correlation_result(backend_kwargs, orientation_batch_size=64)

Get correlation result.

Parameters:

Name Type Description Default
backend_kwargs dict

Keyword arguments for the backend processing

required
orientation_batch_size int

Number of orientations to process at once. Defaults to 64.

64

Returns:

Type Description
dict[str, ndarray]

The result of the refine template program.

Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
def get_correlation_result(
    self, backend_kwargs: dict, orientation_batch_size: int = 64
) -> dict[str, np.ndarray]:
    """Get correlation result.

    Parameters
    ----------
    backend_kwargs : dict
        Keyword arguments for the backend processing
    orientation_batch_size : int
        Number of orientations to process at once. Defaults to 64.

    Returns
    -------
    dict[str, np.ndarray]
        The result of the refine template program.
    """
    # pylint: disable=duplicate-code
    result: dict[str, np.ndarray] = {}
    result = core_refine_template(
        batch_size=orientation_batch_size, **backend_kwargs
    )
    result = {k: v.cpu().numpy() for k, v in result.items()}

    return result

make_backend_core_function_kwargs(prefer_refined_angles=True)

Create the kwargs for the backend refine_template core function.

Parameters:

Name Type Description Default
prefer_refined_angles bool

Whether to use refined angles or not. Defaults to True.

True
Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
def make_backend_core_function_kwargs(
    self, prefer_refined_angles: bool = True
) -> dict[str, Any]:
    """Create the kwargs for the backend refine_template core function.

    Parameters
    ----------
    prefer_refined_angles : bool
        Whether to use refined angles or not. Defaults to True.
    """
    # simulate template volume
    template = self.simulator.run(gpu_ids=self.computational_config.gpu_ids)

    # The set of "best" euler angles from match template search
    # Check if refined angles exist, otherwise use the original angles
    euler_angles = self.particle_stack.get_euler_angles(prefer_refined_angles)

    # The relative Euler angle offsets to search over (none for optimization)
    euler_angle_offsets = torch.zeros((1, 3))

    # The relative defocus values to search over (none for optimization)
    defocus_offsets = torch.tensor([0.0])

    # The relative pixel size values to search over (none for optimization)
    pixel_size_offsets = torch.tensor([0.0])

    # Use the common utility function to set up the backend kwargs
    # pylint: disable=duplicate-code
    return setup_particle_backend_kwargs(
        particle_stack=self.particle_stack,
        template=template,
        preprocessing_filters=self.preprocessing_filters,
        euler_angles=euler_angles,
        euler_angle_offsets=euler_angle_offsets,
        defocus_offsets=defocus_offsets,
        pixel_size_offsets=pixel_size_offsets,
        device_list=self.computational_config.gpu_devices,
    )

optimize_pixel_size(all_results_path)

Optimize the pixel size of the template volume.

Parameters:

Name Type Description Default
all_results_path str

Path to the file for logging all iterations

required

Returns:

Type Description
float

The optimal pixel size.

Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def optimize_pixel_size(self, all_results_path: str) -> float:
    """Optimize the pixel size of the template volume.

    Parameters
    ----------
    all_results_path : str
        Path to the file for logging all iterations

    Returns
    -------
    float
        The optimal pixel size.
    """
    initial_template_px = self.simulator.pixel_spacing
    print(f"Initial template px: {initial_template_px:.3f} Å")

    best_snr = float("-inf")
    best_px = float(initial_template_px)

    print("Starting coarse search...")

    pixel_size_offsets_coarse = self.pixel_size_coarse_search.pixel_size_values
    coarse_px_values = pixel_size_offsets_coarse + initial_template_px

    consecutive_decreases = 0
    consecutive_threshold = 2
    previous_snr = float("-inf")
    for px in coarse_px_values:
        snr = self.evaluate_template_px(px=px.item())
        print(f"Pixel size: {px:.3f}, SNR: {snr:.3f}")

        # Log to file
        with open(all_results_path, "a", encoding="utf-8") as f:
            f.write(f"{px:.3f},{snr:.3f}\n")

        if snr > best_snr:
            best_snr = snr
            best_px = px.item()
        if snr > previous_snr:
            consecutive_decreases = 0
        else:
            consecutive_decreases += 1
            if consecutive_decreases >= consecutive_threshold:
                print(
                    f"SNR decreased for {consecutive_threshold} iterations. "
                    f"Stopping coarse px search."
                )
                break
        previous_snr = snr

    if self.pixel_size_fine_search.enabled:
        pixel_size_offsets_fine = self.pixel_size_fine_search.pixel_size_values
        fine_px_values = pixel_size_offsets_fine + best_px

        consecutive_decreases = 0
        previous_snr = float("-inf")
        for px in fine_px_values:
            snr = self.evaluate_template_px(px=px.item())
            print(f"Pixel size: {px:.3f}, SNR: {snr:.3f}")

            # Log to file
            with open(all_results_path, "a", encoding="utf-8") as f:
                f.write(f"{px:.3f},{snr:.3f}\n")

            if snr > best_snr:
                best_snr = snr
                best_px = px.item()
            if snr > previous_snr:
                consecutive_decreases = 0
            else:
                consecutive_decreases += 1
                if consecutive_decreases >= consecutive_threshold:
                    print(
                        f"SNR decreased for {consecutive_threshold} iterations. "
                        "Stopping fine px search."
                    )
                    break
            previous_snr = snr

    return best_px

results_to_snr(result)

Convert optimize template result to mean SNR.

Parameters:

Name Type Description Default
result dict[str, ndarray]

The result of the optimize template program.

required

Returns:

Type Description
float

The mean SNR of the template.

Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
def results_to_snr(self, result: dict[str, np.ndarray]) -> float:
    """Convert optimize template result to mean SNR.

    Parameters
    ----------
    result : dict[str, np.ndarray]
        The result of the optimize template program.

    Returns
    -------
    float
        The mean SNR of the template.
    """
    # Filter out any infinite or NaN values
    # NOTE: There should not be NaNs or infs, will follow up later
    refined_scaled_mip = result["refined_z_score"]
    refined_scaled_mip = refined_scaled_mip[np.isfinite(refined_scaled_mip)]

    # If more than n values, keep only the top n highest SNRs
    best_n = 6
    if len(refined_scaled_mip) > best_n:
        refined_scaled_mip = np.sort(refined_scaled_mip)[-best_n:]

    # Printing out the results to console
    print(
        f"max snr: {refined_scaled_mip.max()}, min snr: {refined_scaled_mip.min()}"
    )

    mean_snr = float(refined_scaled_mip.mean())

    return mean_snr

run_optimize_template(output_text_path)

Run the refine template program and saves the resultant DataFrame to csv.

Parameters:

Name Type Description Default
output_text_path str

Path to save the optimized template pixel size.

required
Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def run_optimize_template(self, output_text_path: str) -> None:
    """Run the refine template program and saves the resultant DataFrame to csv.

    Parameters
    ----------
    output_text_path : str
        Path to save the optimized template pixel size.
    """
    if self.pixel_size_coarse_search.enabled:
        # Create a file for logging all iterations
        all_results_path = self._get_all_results_path(output_text_path)
        # Create the file and write header
        with open(all_results_path, "w", encoding="utf-8") as f:
            f.write("Pixel Size (Å),SNR\n")

        optimal_template_px = self.optimize_pixel_size(all_results_path)
        print(f"Optimal template px: {optimal_template_px:.3f} Å")
        # print this to the text file
        with open(output_text_path, "w", encoding="utf-8") as f:
            f.write(f"Optimal template px: {optimal_template_px:.3f} Å")