Skip to content

optimize_template_manager

Pydantic model for running the optimize template program.

OptimizeTemplateManager

Bases: BaseModel2DTM

Model holding parameters necessary for running the optimize template program.

Attributes:

Name Type Description
particle_stack ParticleStack

Particle stack object containing particle data.

pixel_size_coarse_search PixelSizeSearchConfig

Configuration for pixel size coarse search.

pixel_size_fine_search PixelSizeSearchConfig

Configuration for pixel size fine search.

preprocessing_filters PreprocessingFilters

Filters to apply to the particle images.

computational_config ComputationalConfigRefine

What computational resources to allocate for the program.

simulator Simulator

The simulator object.

Methods:

Name Description
TODO serialization/import methods
__init__

Initialize the optimize template manager.

make_backend_core_function_kwargs

Create the kwargs for the backend optimize_template core function.

run_optimize_template

Run the optimize template program.

Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
class OptimizeTemplateManager(BaseModel2DTM):
    """Model holding parameters necessary for running the optimize template program.

    Attributes
    ----------
    particle_stack : ParticleStack
        Particle stack object containing particle data.
    pixel_size_coarse_search : PixelSizeSearchConfig
        Configuration for pixel size coarse search.
    pixel_size_fine_search : PixelSizeSearchConfig
        Configuration for pixel size fine search.
    preprocessing_filters : PreprocessingFilters
        Filters to apply to the particle images.
    computational_config : ComputationalConfigRefine
        What computational resources to allocate for the program.
    simulator : Simulator
        The simulator object.

    Methods
    -------
    TODO serialization/import methods
    __init__(self, skip_mrc_preloads: bool = False, **data: Any)
        Initialize the optimize template manager.
    make_backend_core_function_kwargs(self) -> dict[str, Any]
        Create the kwargs for the backend optimize_template core function.
    run_optimize_template(self, output_text_path: str) -> None
        Run the optimize template program.
    """

    model_config: ClassVar = ConfigDict(arbitrary_types_allowed=True)

    particle_stack: ParticleStack
    pixel_size_coarse_search: PixelSizeSearchConfig
    pixel_size_fine_search: PixelSizeSearchConfig
    preprocessing_filters: PreprocessingFilters
    computational_config: ComputationalConfigRefine
    simulator: Simulator

    # Excluded tensors
    template_volume: ExcludedTensor

    def make_backend_core_function_kwargs(
        self, prefer_refined_angles: bool = True
    ) -> dict[str, Any]:
        """Create the kwargs for the backend refine_template core function.

        Parameters
        ----------
        prefer_refined_angles : bool
            Whether to use refined angles or not. Defaults to True.
        """
        # simulate template volume
        template = self.simulator.run(device=self.computational_config.gpu_ids)

        # The set of "best" euler angles from match template search
        # Check if refined angles exist, otherwise use the original angles
        euler_angles = self.particle_stack.get_euler_angles(prefer_refined_angles)

        # The relative Euler angle offsets to search over (none for optimization)
        euler_angle_offsets = torch.zeros((1, 3))

        # The relative defocus values to search over (none for optimization)
        defocus_offsets = torch.tensor([0.0])

        # The relative pixel size values to search over (none for optimization)
        pixel_size_offsets = torch.tensor([0.0])

        # Use the common utility function to set up the backend kwargs
        # pylint: disable=duplicate-code
        return setup_particle_backend_kwargs(
            particle_stack=self.particle_stack,
            template=template,
            preprocessing_filters=self.preprocessing_filters,
            euler_angles=euler_angles,
            euler_angle_offsets=euler_angle_offsets,
            defocus_offsets=defocus_offsets,
            pixel_size_offsets=pixel_size_offsets,
            device_list=self.computational_config.gpu_devices,
        )

    def run_optimize_template(
        self,
        output_text_path: str,
        write_individual_csv: bool = False,
        min_snr: float | None = None,
        best_n: int | None = None,
        consecutive_threshold: int = 2,
    ) -> None:
        """Run the refine template program and saves the resultant DataFrame to csv.

        Parameters
        ----------
        output_text_path : str
            Path to save the optimized template pixel size.
        write_individual_csv : bool
            Whether to write individual CSV files for each pixel size evaluated.
            Defaults to False.
        min_snr : float | None
            Minimum SNR threshold to filter particles.
            If provided, all particles with SNR above this threshold are used.
            Defaults to None.
        best_n : int | None
            Number of best particles to use for SNR calculation. Defaults to None.
            If both min_snr and best_n are provided, applies both filters: first min_snr
            threshold, then limits to best_n particles.
            If neither is provided, uses min_snr=8 as default.
        consecutive_threshold : int
            Number of consecutive iterations with decreasing SNR to stop the search.
            Defaults to 2.
        """
        if self.pixel_size_coarse_search.enabled:
            # Create a file for logging all iterations
            all_results_path = self._get_all_results_path(output_text_path)
            # Create the file and write header
            with open(all_results_path, "w", encoding="utf-8") as f:
                f.write("Pixel Size (Å),SNR\n")

            optimal_template_px = self.optimize_pixel_size(
                all_results_path,
                output_text_path,
                write_individual_csv,
                min_snr,
                best_n,
                consecutive_threshold,
            )
            print(f"Optimal template px: {optimal_template_px:.3f} Å")
            # print this to the text file
            with open(output_text_path, "w", encoding="utf-8") as f:
                f.write(f"Optimal template px: {optimal_template_px:.3f} Å")

    def optimize_pixel_size(  # pylint: disable=too-many-locals
        self,
        all_results_path: str,
        output_text_path: str | None = None,
        write_individual_csv: bool = False,
        min_snr: float | None = None,
        best_n: int | None = None,
        consecutive_threshold: int = 2,
    ) -> float:
        """Optimize the pixel size of the template volume.

        Parameters
        ----------
        all_results_path : str
            Path to the file for logging all iterations
        output_text_path : str | None
            Path to the output text file for saving individual results.
            Defaults to None.
        write_individual_csv : bool
            Whether to write individual CSV files for each pixel size evaluated.
            Defaults to False.
        min_snr : float | None
            Minimum SNR threshold to filter particles. Defaults to None.
        best_n : int | None
            Number of best particles to use for SNR calculation. Defaults to None.
        consecutive_threshold : int
            Number of consecutive iterations with decreasing SNR to stop the search.
            Defaults to 2.

        Returns
        -------
        float
            The optimal pixel size.
        """
        initial_template_px = self.simulator.pixel_spacing
        print(f"Initial template px: {initial_template_px:.3f} Å")

        best_snr = float("-inf")
        best_px = float(initial_template_px)

        print("Starting coarse search...")

        pixel_size_offsets_coarse = self.pixel_size_coarse_search.pixel_size_values
        coarse_px_values = pixel_size_offsets_coarse + initial_template_px

        consecutive_decreases = 0
        consecutive_threshold_coarse = 2
        previous_snr = float("-inf")
        for px in coarse_px_values:
            snr = self.evaluate_template_px(
                px=px.item(),
                output_text_path=output_text_path,
                write_individual_csv=write_individual_csv,
                min_snr=min_snr,
                best_n=best_n,
            )
            print(f"Pixel size: {px:.3f}, SNR: {snr:.3f}")

            # Log to file
            with open(all_results_path, "a", encoding="utf-8") as f:
                f.write(f"{px:.3f},{snr:.3f}\n")

            if snr > best_snr:
                best_snr = snr
                best_px = px.item()
            if snr > previous_snr:
                consecutive_decreases = 0
            else:
                consecutive_decreases += 1
                if consecutive_decreases >= consecutive_threshold_coarse:
                    print(
                        f"SNR decreased for {consecutive_threshold_coarse} iterations. "
                        f"Stopping coarse px search."
                    )
                    break
            previous_snr = snr

        if self.pixel_size_fine_search.enabled:
            pixel_size_offsets_fine = self.pixel_size_fine_search.pixel_size_values
            fine_px_values = pixel_size_offsets_fine + best_px

            consecutive_decreases = 0
            previous_snr = float("-inf")
            for px in fine_px_values:
                snr = self.evaluate_template_px(
                    px=px.item(),
                    output_text_path=output_text_path,
                    write_individual_csv=write_individual_csv,
                    min_snr=min_snr,
                    best_n=best_n,
                )
                print(f"Pixel size: {px:.3f}, SNR: {snr:.3f}")

                # Log to file
                with open(all_results_path, "a", encoding="utf-8") as f:
                    f.write(f"{px:.3f},{snr:.3f}\n")

                if snr > best_snr:
                    best_snr = snr
                    best_px = px.item()
                if snr > previous_snr:
                    consecutive_decreases = 0
                else:
                    consecutive_decreases += 1
                    if consecutive_decreases >= consecutive_threshold:
                        print(
                            f"SNR decreased for {consecutive_threshold} iterations. "
                            "Stopping fine px search."
                        )
                        break
                previous_snr = snr

        return best_px

    def evaluate_template_px(
        self,
        px: float,
        output_text_path: str | None = None,
        write_individual_csv: bool = False,
        min_snr: float | None = None,
        best_n: int | None = None,
    ) -> float:
        """Evaluate the template pixel size.

        Parameters
        ----------
        px : float
            The pixel size to evaluate.
        output_text_path : str | None
            Path to the output text file. If provided, saves result to CSV.
            Defaults to None.
        write_individual_csv : bool
            Whether to write individual CSV files for each pixel size evaluated.
            Defaults to False.
        min_snr : float | None
            Minimum SNR threshold to filter particles. Defaults to None.
        best_n : int | None
            Number of best particles to use for SNR calculation. Defaults to None.

        Returns
        -------
        float
            The mean SNR of the template.
        """
        self.simulator.pixel_spacing = px
        backend_kwargs = self.make_backend_core_function_kwargs()
        result = self.get_correlation_result(backend_kwargs, 1)

        # Save result to CSV if output_text_path is provided
        # and write_individual_csv is True
        if output_text_path is not None and write_individual_csv:
            base, _ = os.path.splitext(output_text_path)
            csv_path = f"{base}_pix={px:.3f}.csv"
            self.refine_result_to_dataframe(csv_path, result)
            print(f"Saved result to {csv_path}")

        mean_snr = self.results_to_snr(result, min_snr=min_snr, best_n=best_n)
        return mean_snr

    def get_correlation_result(
        self, backend_kwargs: dict, orientation_batch_size: int = 64
    ) -> dict[str, np.ndarray]:
        """Get correlation result.

        Parameters
        ----------
        backend_kwargs : dict
            Keyword arguments for the backend processing
        orientation_batch_size : int
            Number of orientations to process at once. Defaults to 64.

        Returns
        -------
        dict[str, np.ndarray]
            The result of the refine template program.
        """
        # pylint: disable=duplicate-code
        result: dict[str, np.ndarray] = {}
        result = core_refine_template(
            batch_size=orientation_batch_size, **backend_kwargs
        )
        result = {k: v.cpu().numpy() for k, v in result.items()}

        return result

    def results_to_snr(
        self,
        result: dict[str, np.ndarray],
        min_snr: float | None = None,
        best_n: int | None = None,
    ) -> float:
        """Convert optimize template result to mean SNR.

        Parameters
        ----------
        result : dict[str, np.ndarray]
            The result of the optimize template program.
        min_snr : float | None
            Minimum SNR threshold to filter particles.
            If provided, all particles with SNR above
            this threshold are used. Defaults to None.
        best_n : int | None
            Number of best particles to use for SNR calculation. Defaults to None.
            If both min_snr and best_n are provided, applies both filters: first min_snr
            threshold, then limits to best_n particles.

        Returns
        -------
        float
            The mean SNR of the template.
        """
        # Filter out any infinite or NaN values
        # NOTE: There should not be NaNs or infs, will follow up later
        min_snr_default = 8.0
        refined_scaled_mip = result["refined_z_score"]
        refined_scaled_mip = refined_scaled_mip[np.isfinite(refined_scaled_mip)]

        # Handle filtering logic
        if min_snr is not None and best_n is not None:
            # Use both filters: first min_snr threshold, then limit to best_n
            refined_scaled_mip = refined_scaled_mip[refined_scaled_mip >= min_snr]
            if len(refined_scaled_mip) == 0:
                print(
                    f"Warning: No particles found with SNR >= {min_snr}. "
                    "Using all particles instead."
                )
                refined_scaled_mip = result["refined_z_score"]
                refined_scaled_mip = refined_scaled_mip[np.isfinite(refined_scaled_mip)]
            # Then limit to best_n
            if len(refined_scaled_mip) > best_n:
                refined_scaled_mip = np.sort(refined_scaled_mip)[-best_n:]
        elif min_snr is not None:
            # Use min_snr threshold
            refined_scaled_mip = refined_scaled_mip[refined_scaled_mip >= min_snr]
            if len(refined_scaled_mip) == 0:
                print(
                    f"Warning: No particles found with SNR >= {min_snr}. "
                    "Using all particles instead."
                )
                refined_scaled_mip = result["refined_z_score"]
                refined_scaled_mip = refined_scaled_mip[np.isfinite(refined_scaled_mip)]
        elif best_n is not None:
            # Use best_n
            if len(refined_scaled_mip) > best_n:
                refined_scaled_mip = np.sort(refined_scaled_mip)[-best_n:]
        else:
            # Default behavior: use min_snr=8
            refined_scaled_mip = refined_scaled_mip[
                refined_scaled_mip >= min_snr_default
            ]
            if len(refined_scaled_mip) == 0:
                print(
                    f"Warning: No particles found with SNR >= {min_snr_default}. "
                    "Using all particles instead."
                )
                refined_scaled_mip = result["refined_z_score"]
                refined_scaled_mip = refined_scaled_mip[np.isfinite(refined_scaled_mip)]

        # Printing out the results to console
        print(
            f"max snr: {refined_scaled_mip.max()}, min snr: {refined_scaled_mip.min()}"
        )

        mean_snr = float(refined_scaled_mip.mean())

        return mean_snr

    def _get_all_results_path(self, output_text_path: str) -> str:
        """Generate the results file path from the output text path.

        Parameters
        ----------
        output_text_path : str
            Path to the output text file

        Returns
        -------
        str
            Path to the file with _all.txt extension
        """
        base, _ = os.path.splitext(output_text_path)
        return f"{base}_all.csv"

    def refine_result_to_dataframe(  # pylint: disable=too-many-locals
        self,
        output_dataframe_path: str,
        result: dict[str, np.ndarray],
        prefer_refined_angles: bool = True,
    ) -> None:
        """Convert refine template result to dataframe.

        Parameters
        ----------
        output_dataframe_path : str
            Path to save the refined particle data.
        result : dict[str, np.ndarray]
            The result of the refine template program.
        prefer_refined_angles : bool
            Whether to use the refined angles or not. Defaults to True.
        """
        # pylint: disable=duplicate-code
        df_refined = self.particle_stack._df.copy()  # pylint: disable=protected-access

        # x and y positions
        pos_offset_y = result["refined_pos_y"]
        pos_offset_x = result["refined_pos_x"]
        pos_offset_y_ang = pos_offset_y * df_refined["pixel_size"]
        pos_offset_x_ang = pos_offset_x * df_refined["pixel_size"]

        if (
            prefer_refined_angles
            and self.particle_stack._get_position_reference_columns()  # pylint: disable=protected-access
            == ("refined_pos_y", "refined_pos_x")
        ):
            pos_y_col = "refined_pos_y"
            pos_x_col = "refined_pos_x"
            pos_y_col_img = "refined_pos_y_img"
            pos_x_col_img = "refined_pos_x_img"
            pos_y_col_img_angstrom = "refined_pos_y_img_angstrom"
            pos_x_col_img_angstrom = "refined_pos_x_img_angstrom"
        else:
            pos_y_col = "pos_y"
            pos_x_col = "pos_x"
            pos_y_col_img = "pos_y_img"
            pos_x_col_img = "pos_x_img"
            pos_y_col_img_angstrom = "pos_y_img_angstrom"
            pos_x_col_img_angstrom = "pos_x_img_angstrom"

        df_refined["refined_pos_y"] = pos_offset_y + df_refined[pos_y_col]
        df_refined["refined_pos_x"] = pos_offset_x + df_refined[pos_x_col]
        df_refined["refined_pos_y_img"] = pos_offset_y + df_refined[pos_y_col_img]
        df_refined["refined_pos_x_img"] = pos_offset_x + df_refined[pos_x_col_img]
        df_refined["refined_pos_y_img_angstrom"] = (
            pos_offset_y_ang + df_refined[pos_y_col_img_angstrom]
        )
        df_refined["refined_pos_x_img_angstrom"] = (
            pos_offset_x_ang + df_refined[pos_x_col_img_angstrom]
        )

        # Euler angles
        df_refined["refined_psi"] = result["refined_euler_angles"][:, 2]
        df_refined["refined_theta"] = result["refined_euler_angles"][:, 1]
        df_refined["refined_phi"] = result["refined_euler_angles"][:, 0]

        # Defocus
        df_refined["refined_relative_defocus"] = (
            result["refined_defocus_offset"]
            + self.particle_stack.get_relative_defocus().cpu().numpy()
        )

        # Pixel size
        df_refined["refined_pixel_size"] = (
            result["refined_pixel_size_offset"]
            + self.particle_stack.get_pixel_size().cpu().numpy()
        )

        refined_mip = result["refined_cross_correlation"]
        refined_scaled_mip = result["refined_z_score"]
        df_refined["refined_mip"] = refined_mip
        df_refined["refined_scaled_mip"] = refined_scaled_mip

        # Reorder the columns
        df_refined = df_refined.reindex(columns=REFINED_DF_COLUMN_ORDER)

        # Save the refined DataFrame to disk
        df_refined.to_csv(output_dataframe_path)

evaluate_template_px(px, output_text_path=None, write_individual_csv=False, min_snr=None, best_n=None)

Evaluate the template pixel size.

Parameters:

Name Type Description Default
px float

The pixel size to evaluate.

required
output_text_path str | None

Path to the output text file. If provided, saves result to CSV. Defaults to None.

None
write_individual_csv bool

Whether to write individual CSV files for each pixel size evaluated. Defaults to False.

False
min_snr float | None

Minimum SNR threshold to filter particles. Defaults to None.

None
best_n int | None

Number of best particles to use for SNR calculation. Defaults to None.

None

Returns:

Type Description
float

The mean SNR of the template.

Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
def evaluate_template_px(
    self,
    px: float,
    output_text_path: str | None = None,
    write_individual_csv: bool = False,
    min_snr: float | None = None,
    best_n: int | None = None,
) -> float:
    """Evaluate the template pixel size.

    Parameters
    ----------
    px : float
        The pixel size to evaluate.
    output_text_path : str | None
        Path to the output text file. If provided, saves result to CSV.
        Defaults to None.
    write_individual_csv : bool
        Whether to write individual CSV files for each pixel size evaluated.
        Defaults to False.
    min_snr : float | None
        Minimum SNR threshold to filter particles. Defaults to None.
    best_n : int | None
        Number of best particles to use for SNR calculation. Defaults to None.

    Returns
    -------
    float
        The mean SNR of the template.
    """
    self.simulator.pixel_spacing = px
    backend_kwargs = self.make_backend_core_function_kwargs()
    result = self.get_correlation_result(backend_kwargs, 1)

    # Save result to CSV if output_text_path is provided
    # and write_individual_csv is True
    if output_text_path is not None and write_individual_csv:
        base, _ = os.path.splitext(output_text_path)
        csv_path = f"{base}_pix={px:.3f}.csv"
        self.refine_result_to_dataframe(csv_path, result)
        print(f"Saved result to {csv_path}")

    mean_snr = self.results_to_snr(result, min_snr=min_snr, best_n=best_n)
    return mean_snr

get_correlation_result(backend_kwargs, orientation_batch_size=64)

Get correlation result.

Parameters:

Name Type Description Default
backend_kwargs dict

Keyword arguments for the backend processing

required
orientation_batch_size int

Number of orientations to process at once. Defaults to 64.

64

Returns:

Type Description
dict[str, ndarray]

The result of the refine template program.

Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
def get_correlation_result(
    self, backend_kwargs: dict, orientation_batch_size: int = 64
) -> dict[str, np.ndarray]:
    """Get correlation result.

    Parameters
    ----------
    backend_kwargs : dict
        Keyword arguments for the backend processing
    orientation_batch_size : int
        Number of orientations to process at once. Defaults to 64.

    Returns
    -------
    dict[str, np.ndarray]
        The result of the refine template program.
    """
    # pylint: disable=duplicate-code
    result: dict[str, np.ndarray] = {}
    result = core_refine_template(
        batch_size=orientation_batch_size, **backend_kwargs
    )
    result = {k: v.cpu().numpy() for k, v in result.items()}

    return result

make_backend_core_function_kwargs(prefer_refined_angles=True)

Create the kwargs for the backend refine_template core function.

Parameters:

Name Type Description Default
prefer_refined_angles bool

Whether to use refined angles or not. Defaults to True.

True
Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
def make_backend_core_function_kwargs(
    self, prefer_refined_angles: bool = True
) -> dict[str, Any]:
    """Create the kwargs for the backend refine_template core function.

    Parameters
    ----------
    prefer_refined_angles : bool
        Whether to use refined angles or not. Defaults to True.
    """
    # simulate template volume
    template = self.simulator.run(device=self.computational_config.gpu_ids)

    # The set of "best" euler angles from match template search
    # Check if refined angles exist, otherwise use the original angles
    euler_angles = self.particle_stack.get_euler_angles(prefer_refined_angles)

    # The relative Euler angle offsets to search over (none for optimization)
    euler_angle_offsets = torch.zeros((1, 3))

    # The relative defocus values to search over (none for optimization)
    defocus_offsets = torch.tensor([0.0])

    # The relative pixel size values to search over (none for optimization)
    pixel_size_offsets = torch.tensor([0.0])

    # Use the common utility function to set up the backend kwargs
    # pylint: disable=duplicate-code
    return setup_particle_backend_kwargs(
        particle_stack=self.particle_stack,
        template=template,
        preprocessing_filters=self.preprocessing_filters,
        euler_angles=euler_angles,
        euler_angle_offsets=euler_angle_offsets,
        defocus_offsets=defocus_offsets,
        pixel_size_offsets=pixel_size_offsets,
        device_list=self.computational_config.gpu_devices,
    )

optimize_pixel_size(all_results_path, output_text_path=None, write_individual_csv=False, min_snr=None, best_n=None, consecutive_threshold=2)

Optimize the pixel size of the template volume.

Parameters:

Name Type Description Default
all_results_path str

Path to the file for logging all iterations

required
output_text_path str | None

Path to the output text file for saving individual results. Defaults to None.

None
write_individual_csv bool

Whether to write individual CSV files for each pixel size evaluated. Defaults to False.

False
min_snr float | None

Minimum SNR threshold to filter particles. Defaults to None.

None
best_n int | None

Number of best particles to use for SNR calculation. Defaults to None.

None
consecutive_threshold int

Number of consecutive iterations with decreasing SNR to stop the search. Defaults to 2.

2

Returns:

Type Description
float

The optimal pixel size.

Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
def optimize_pixel_size(  # pylint: disable=too-many-locals
    self,
    all_results_path: str,
    output_text_path: str | None = None,
    write_individual_csv: bool = False,
    min_snr: float | None = None,
    best_n: int | None = None,
    consecutive_threshold: int = 2,
) -> float:
    """Optimize the pixel size of the template volume.

    Parameters
    ----------
    all_results_path : str
        Path to the file for logging all iterations
    output_text_path : str | None
        Path to the output text file for saving individual results.
        Defaults to None.
    write_individual_csv : bool
        Whether to write individual CSV files for each pixel size evaluated.
        Defaults to False.
    min_snr : float | None
        Minimum SNR threshold to filter particles. Defaults to None.
    best_n : int | None
        Number of best particles to use for SNR calculation. Defaults to None.
    consecutive_threshold : int
        Number of consecutive iterations with decreasing SNR to stop the search.
        Defaults to 2.

    Returns
    -------
    float
        The optimal pixel size.
    """
    initial_template_px = self.simulator.pixel_spacing
    print(f"Initial template px: {initial_template_px:.3f} Å")

    best_snr = float("-inf")
    best_px = float(initial_template_px)

    print("Starting coarse search...")

    pixel_size_offsets_coarse = self.pixel_size_coarse_search.pixel_size_values
    coarse_px_values = pixel_size_offsets_coarse + initial_template_px

    consecutive_decreases = 0
    consecutive_threshold_coarse = 2
    previous_snr = float("-inf")
    for px in coarse_px_values:
        snr = self.evaluate_template_px(
            px=px.item(),
            output_text_path=output_text_path,
            write_individual_csv=write_individual_csv,
            min_snr=min_snr,
            best_n=best_n,
        )
        print(f"Pixel size: {px:.3f}, SNR: {snr:.3f}")

        # Log to file
        with open(all_results_path, "a", encoding="utf-8") as f:
            f.write(f"{px:.3f},{snr:.3f}\n")

        if snr > best_snr:
            best_snr = snr
            best_px = px.item()
        if snr > previous_snr:
            consecutive_decreases = 0
        else:
            consecutive_decreases += 1
            if consecutive_decreases >= consecutive_threshold_coarse:
                print(
                    f"SNR decreased for {consecutive_threshold_coarse} iterations. "
                    f"Stopping coarse px search."
                )
                break
        previous_snr = snr

    if self.pixel_size_fine_search.enabled:
        pixel_size_offsets_fine = self.pixel_size_fine_search.pixel_size_values
        fine_px_values = pixel_size_offsets_fine + best_px

        consecutive_decreases = 0
        previous_snr = float("-inf")
        for px in fine_px_values:
            snr = self.evaluate_template_px(
                px=px.item(),
                output_text_path=output_text_path,
                write_individual_csv=write_individual_csv,
                min_snr=min_snr,
                best_n=best_n,
            )
            print(f"Pixel size: {px:.3f}, SNR: {snr:.3f}")

            # Log to file
            with open(all_results_path, "a", encoding="utf-8") as f:
                f.write(f"{px:.3f},{snr:.3f}\n")

            if snr > best_snr:
                best_snr = snr
                best_px = px.item()
            if snr > previous_snr:
                consecutive_decreases = 0
            else:
                consecutive_decreases += 1
                if consecutive_decreases >= consecutive_threshold:
                    print(
                        f"SNR decreased for {consecutive_threshold} iterations. "
                        "Stopping fine px search."
                    )
                    break
            previous_snr = snr

    return best_px

refine_result_to_dataframe(output_dataframe_path, result, prefer_refined_angles=True)

Convert refine template result to dataframe.

Parameters:

Name Type Description Default
output_dataframe_path str

Path to save the refined particle data.

required
result dict[str, ndarray]

The result of the refine template program.

required
prefer_refined_angles bool

Whether to use the refined angles or not. Defaults to True.

True
Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
def refine_result_to_dataframe(  # pylint: disable=too-many-locals
    self,
    output_dataframe_path: str,
    result: dict[str, np.ndarray],
    prefer_refined_angles: bool = True,
) -> None:
    """Convert refine template result to dataframe.

    Parameters
    ----------
    output_dataframe_path : str
        Path to save the refined particle data.
    result : dict[str, np.ndarray]
        The result of the refine template program.
    prefer_refined_angles : bool
        Whether to use the refined angles or not. Defaults to True.
    """
    # pylint: disable=duplicate-code
    df_refined = self.particle_stack._df.copy()  # pylint: disable=protected-access

    # x and y positions
    pos_offset_y = result["refined_pos_y"]
    pos_offset_x = result["refined_pos_x"]
    pos_offset_y_ang = pos_offset_y * df_refined["pixel_size"]
    pos_offset_x_ang = pos_offset_x * df_refined["pixel_size"]

    if (
        prefer_refined_angles
        and self.particle_stack._get_position_reference_columns()  # pylint: disable=protected-access
        == ("refined_pos_y", "refined_pos_x")
    ):
        pos_y_col = "refined_pos_y"
        pos_x_col = "refined_pos_x"
        pos_y_col_img = "refined_pos_y_img"
        pos_x_col_img = "refined_pos_x_img"
        pos_y_col_img_angstrom = "refined_pos_y_img_angstrom"
        pos_x_col_img_angstrom = "refined_pos_x_img_angstrom"
    else:
        pos_y_col = "pos_y"
        pos_x_col = "pos_x"
        pos_y_col_img = "pos_y_img"
        pos_x_col_img = "pos_x_img"
        pos_y_col_img_angstrom = "pos_y_img_angstrom"
        pos_x_col_img_angstrom = "pos_x_img_angstrom"

    df_refined["refined_pos_y"] = pos_offset_y + df_refined[pos_y_col]
    df_refined["refined_pos_x"] = pos_offset_x + df_refined[pos_x_col]
    df_refined["refined_pos_y_img"] = pos_offset_y + df_refined[pos_y_col_img]
    df_refined["refined_pos_x_img"] = pos_offset_x + df_refined[pos_x_col_img]
    df_refined["refined_pos_y_img_angstrom"] = (
        pos_offset_y_ang + df_refined[pos_y_col_img_angstrom]
    )
    df_refined["refined_pos_x_img_angstrom"] = (
        pos_offset_x_ang + df_refined[pos_x_col_img_angstrom]
    )

    # Euler angles
    df_refined["refined_psi"] = result["refined_euler_angles"][:, 2]
    df_refined["refined_theta"] = result["refined_euler_angles"][:, 1]
    df_refined["refined_phi"] = result["refined_euler_angles"][:, 0]

    # Defocus
    df_refined["refined_relative_defocus"] = (
        result["refined_defocus_offset"]
        + self.particle_stack.get_relative_defocus().cpu().numpy()
    )

    # Pixel size
    df_refined["refined_pixel_size"] = (
        result["refined_pixel_size_offset"]
        + self.particle_stack.get_pixel_size().cpu().numpy()
    )

    refined_mip = result["refined_cross_correlation"]
    refined_scaled_mip = result["refined_z_score"]
    df_refined["refined_mip"] = refined_mip
    df_refined["refined_scaled_mip"] = refined_scaled_mip

    # Reorder the columns
    df_refined = df_refined.reindex(columns=REFINED_DF_COLUMN_ORDER)

    # Save the refined DataFrame to disk
    df_refined.to_csv(output_dataframe_path)

results_to_snr(result, min_snr=None, best_n=None)

Convert optimize template result to mean SNR.

Parameters:

Name Type Description Default
result dict[str, ndarray]

The result of the optimize template program.

required
min_snr float | None

Minimum SNR threshold to filter particles. If provided, all particles with SNR above this threshold are used. Defaults to None.

None
best_n int | None

Number of best particles to use for SNR calculation. Defaults to None. If both min_snr and best_n are provided, applies both filters: first min_snr threshold, then limits to best_n particles.

None

Returns:

Type Description
float

The mean SNR of the template.

Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
def results_to_snr(
    self,
    result: dict[str, np.ndarray],
    min_snr: float | None = None,
    best_n: int | None = None,
) -> float:
    """Convert optimize template result to mean SNR.

    Parameters
    ----------
    result : dict[str, np.ndarray]
        The result of the optimize template program.
    min_snr : float | None
        Minimum SNR threshold to filter particles.
        If provided, all particles with SNR above
        this threshold are used. Defaults to None.
    best_n : int | None
        Number of best particles to use for SNR calculation. Defaults to None.
        If both min_snr and best_n are provided, applies both filters: first min_snr
        threshold, then limits to best_n particles.

    Returns
    -------
    float
        The mean SNR of the template.
    """
    # Filter out any infinite or NaN values
    # NOTE: There should not be NaNs or infs, will follow up later
    min_snr_default = 8.0
    refined_scaled_mip = result["refined_z_score"]
    refined_scaled_mip = refined_scaled_mip[np.isfinite(refined_scaled_mip)]

    # Handle filtering logic
    if min_snr is not None and best_n is not None:
        # Use both filters: first min_snr threshold, then limit to best_n
        refined_scaled_mip = refined_scaled_mip[refined_scaled_mip >= min_snr]
        if len(refined_scaled_mip) == 0:
            print(
                f"Warning: No particles found with SNR >= {min_snr}. "
                "Using all particles instead."
            )
            refined_scaled_mip = result["refined_z_score"]
            refined_scaled_mip = refined_scaled_mip[np.isfinite(refined_scaled_mip)]
        # Then limit to best_n
        if len(refined_scaled_mip) > best_n:
            refined_scaled_mip = np.sort(refined_scaled_mip)[-best_n:]
    elif min_snr is not None:
        # Use min_snr threshold
        refined_scaled_mip = refined_scaled_mip[refined_scaled_mip >= min_snr]
        if len(refined_scaled_mip) == 0:
            print(
                f"Warning: No particles found with SNR >= {min_snr}. "
                "Using all particles instead."
            )
            refined_scaled_mip = result["refined_z_score"]
            refined_scaled_mip = refined_scaled_mip[np.isfinite(refined_scaled_mip)]
    elif best_n is not None:
        # Use best_n
        if len(refined_scaled_mip) > best_n:
            refined_scaled_mip = np.sort(refined_scaled_mip)[-best_n:]
    else:
        # Default behavior: use min_snr=8
        refined_scaled_mip = refined_scaled_mip[
            refined_scaled_mip >= min_snr_default
        ]
        if len(refined_scaled_mip) == 0:
            print(
                f"Warning: No particles found with SNR >= {min_snr_default}. "
                "Using all particles instead."
            )
            refined_scaled_mip = result["refined_z_score"]
            refined_scaled_mip = refined_scaled_mip[np.isfinite(refined_scaled_mip)]

    # Printing out the results to console
    print(
        f"max snr: {refined_scaled_mip.max()}, min snr: {refined_scaled_mip.min()}"
    )

    mean_snr = float(refined_scaled_mip.mean())

    return mean_snr

run_optimize_template(output_text_path, write_individual_csv=False, min_snr=None, best_n=None, consecutive_threshold=2)

Run the refine template program and saves the resultant DataFrame to csv.

Parameters:

Name Type Description Default
output_text_path str

Path to save the optimized template pixel size.

required
write_individual_csv bool

Whether to write individual CSV files for each pixel size evaluated. Defaults to False.

False
min_snr float | None

Minimum SNR threshold to filter particles. If provided, all particles with SNR above this threshold are used. Defaults to None.

None
best_n int | None

Number of best particles to use for SNR calculation. Defaults to None. If both min_snr and best_n are provided, applies both filters: first min_snr threshold, then limits to best_n particles. If neither is provided, uses min_snr=8 as default.

None
consecutive_threshold int

Number of consecutive iterations with decreasing SNR to stop the search. Defaults to 2.

2
Source code in src/leopard_em/pydantic_models/managers/optimize_template_manager.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def run_optimize_template(
    self,
    output_text_path: str,
    write_individual_csv: bool = False,
    min_snr: float | None = None,
    best_n: int | None = None,
    consecutive_threshold: int = 2,
) -> None:
    """Run the refine template program and saves the resultant DataFrame to csv.

    Parameters
    ----------
    output_text_path : str
        Path to save the optimized template pixel size.
    write_individual_csv : bool
        Whether to write individual CSV files for each pixel size evaluated.
        Defaults to False.
    min_snr : float | None
        Minimum SNR threshold to filter particles.
        If provided, all particles with SNR above this threshold are used.
        Defaults to None.
    best_n : int | None
        Number of best particles to use for SNR calculation. Defaults to None.
        If both min_snr and best_n are provided, applies both filters: first min_snr
        threshold, then limits to best_n particles.
        If neither is provided, uses min_snr=8 as default.
    consecutive_threshold : int
        Number of consecutive iterations with decreasing SNR to stop the search.
        Defaults to 2.
    """
    if self.pixel_size_coarse_search.enabled:
        # Create a file for logging all iterations
        all_results_path = self._get_all_results_path(output_text_path)
        # Create the file and write header
        with open(all_results_path, "w", encoding="utf-8") as f:
            f.write("Pixel Size (Å),SNR\n")

        optimal_template_px = self.optimize_pixel_size(
            all_results_path,
            output_text_path,
            write_individual_csv,
            min_snr,
            best_n,
            consecutive_threshold,
        )
        print(f"Optimal template px: {optimal_template_px:.3f} Å")
        # print this to the text file
        with open(output_text_path, "w", encoding="utf-8") as f:
            f.write(f"Optimal template px: {optimal_template_px:.3f} Å")