Skip to content

backend

Submodule for computationally intensive backend functions.

cross_correlate_particle_stack(particle_stack_dft, template_dft, rotation_matrices, projective_filters, mode='valid', batch_size=1024)

Cross-correlate a stack of particle images against a template.

Here, the argument 'particle_stack_dft' is a set of RFFT-ed particle images with necessary filtering already applied. The zeroth dimension corresponds to unique particles.

Parameters:

Name Type Description Default
particle_stack_dft Tensor

The stack of particle real-Fourier transformed and un-fftshifted images. Shape of (N, H, W).

required
template_dft Tensor

The template volume to extract central slices from. Real-Fourier transformed and fftshifted.

required
rotation_matrices Tensor

The orientations of the particles to take the Fourier slices of, as a long list of rotation matrices. Shape of (N, 3, 3).

required
projective_filters Tensor

Projective filters to apply to each Fourier slice particle. Shape of (N, h, w).

required
mode Literal['valid', 'same']

Correlation mode to use, by default "valid". If "valid", the output will be the valid cross-correlation of the inputs. If "same", the output will be the same shape as the input particle stack.

'valid'
batch_size int

The number of particle images to cross-correlate at once. Default is 1024. Larger sizes will consume more memory. If -1, then the entire stack will be cross-correlated at once.

1024

Returns:

Type Description
Tensor

The cross-correlation of the particle stack with the template. Shape will depend on the mode used. If "valid", the output will be (N, H-h+1, W-w+1). If "same", the output will be (N, H, W).

Raises:

Type Description
ValueError

If the mode is not "valid" or "same".

Source code in src/leopard_em/backend/core_refine_template.py
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
def cross_correlate_particle_stack(
    particle_stack_dft: torch.Tensor,  # (N, H, W)
    template_dft: torch.Tensor,  # (d, h, w)
    rotation_matrices: torch.Tensor,  # (N, 3, 3)
    projective_filters: torch.Tensor,  # (N, h, w)
    mode: Literal["valid", "same"] = "valid",
    batch_size: int = 1024,
) -> torch.Tensor:
    """Cross-correlate a stack of particle images against a template.

    Here, the argument 'particle_stack_dft' is a set of RFFT-ed particle images with
    necessary filtering already applied. The zeroth dimension corresponds to unique
    particles.

    Parameters
    ----------
    particle_stack_dft : torch.Tensor
        The stack of particle real-Fourier transformed and un-fftshifted images.
        Shape of (N, H, W).
    template_dft : torch.Tensor
        The template volume to extract central slices from. Real-Fourier transformed
        and fftshifted.
    rotation_matrices : torch.Tensor
        The orientations of the particles to take the Fourier slices of, as a long
        list of rotation matrices. Shape of (N, 3, 3).
    projective_filters : torch.Tensor
        Projective filters to apply to each Fourier slice particle. Shape of (N, h, w).
    mode : Literal["valid", "same"], optional
        Correlation mode to use, by default "valid". If "valid", the output will be
        the valid cross-correlation of the inputs. If "same", the output will be the
        same shape as the input particle stack.
    batch_size : int, optional
        The number of particle images to cross-correlate at once. Default is 1024.
        Larger sizes will consume more memory. If -1, then the entire stack will be
        cross-correlated at once.

    Returns
    -------
    torch.Tensor
        The cross-correlation of the particle stack with the template. Shape will depend
        on the mode used. If "valid", the output will be (N, H-h+1, W-w+1). If "same",
        the output will be (N, H, W).

    Raises
    ------
    ValueError
        If the mode is not "valid" or "same".
    """
    # Helpful constants for later use
    device = particle_stack_dft.device
    num_particles, image_h, image_w = particle_stack_dft.shape
    _, template_h, template_w = template_dft.shape
    # account for RFFT
    image_w = 2 * (image_w - 1)
    template_w = 2 * (template_w - 1)

    if batch_size == -1:
        batch_size = num_particles

    if mode == "valid":
        output_shape = (
            num_particles,
            image_h - template_h + 1,
            image_w - template_w + 1,
        )
    elif mode == "same":
        output_shape = (num_particles, image_h, image_w)
    else:
        raise ValueError(f"Invalid mode: {mode}. Must be 'valid' or 'same'.")

    out_correlation = torch.zeros(output_shape, device=device)

    # Loop over the particle stack in batches
    for i in range(0, num_particles, batch_size):
        batch_particles_dft = particle_stack_dft[i : i + batch_size]
        batch_rotation_matrices = rotation_matrices[i : i + batch_size]
        batch_projective_filters = projective_filters[i : i + batch_size]

        # Extract the Fourier slice and apply the projective filters
        fourier_slice = extract_central_slices_rfft_3d(
            volume_rfft=template_dft,
            image_shape=(template_h,) * 3,
            rotation_matrices=batch_rotation_matrices,
        )
        fourier_slice = torch.fft.ifftshift(fourier_slice, dim=(-2,))
        fourier_slice[..., 0, 0] = 0 + 0j  # zero out the DC component (mean zero)
        fourier_slice *= -1  # flip contrast
        fourier_slice *= batch_projective_filters

        # Inverse Fourier transform and normalize the projection
        projections = torch.fft.irfftn(fourier_slice, dim=(-2, -1))
        projections = torch.fft.ifftshift(projections, dim=(-2, -1))
        projections = normalize_template_projection(
            projections, (template_h, template_w), (image_h, image_w)
        )

        # Padded forward FFT and cross-correlate
        projections_dft = torch.fft.rfftn(
            projections, dim=(-2, -1), s=(image_h, image_w)
        )
        projections_dft = batch_particles_dft * projections_dft.conj()
        cross_correlation = torch.fft.irfftn(projections_dft, dim=(-2, -1))

        # Handle the output shape
        cross_correlation = handle_correlation_mode(
            cross_correlation, output_shape, mode
        )

        out_correlation[i : i + batch_size] = cross_correlation

    return out_correlation